
Modular Signal Processing Unit for Motion Control
Applications Based on System-on-Chip with FPGA

Vlastimil Šetka∗, Ondřej Ježek∗, Rihards Novickis†
∗NTIS – New Technologies for the Information Society Research Center,

Faculty of Applied Sciences, University of West Bohemia, Technická 8, Pilsen, Czech Republic
E-mail: {setka,ojezek}@ntis.zcu.cz

†EDI – Institute of Electronics and Computer Science,
14 Dzerbenes St., LV-1006, Riga, Latvia

E-mail: rihards.novickis@edi.lv

Abstract—Motion control systems with distributed architecture
where multiple input/output devices are connected to the upper
layer controller by fast digital communication (fieldbus) became
an industrial standard. This paper presents design of a modular
input/output device which can process signals from multiple
sensors, drive multiple actuators and act as a Slave or Master
node in EtherCAT fieldbus network.

User-defined algorithms can be easily implemented to pre-
process input signals, combine multiple signals or close local
control loops with extremely high sampling rates which makes
the difference to standard off-the-shelf solutions. To meet these
requirements and simplify hardware design, our device is based
on System-on-Chip with both programmable logic (FPGA) and
classic processor (CPU) ARM cores. Data processing including
user algorithms can be done entirely in FPGA which provides
very low latency and no jitter, and also on CPU for more complex
computations with advantage of tight integration between FPGA
and CPU. In this paper we provide description of hardware
design, system architecture and typical applications.

Index Terms—FPGA, System-on-Chip, Industrial I/O Device,
Motion Control, Real-time Systems, EtherCAT, Asymmetric Mul-
tiprocessing

I. INTRODUCTION

The paper is organized as follows. Section II discusses our
solution next to a standard commercially available platforms
and defines the key requirements. Section III deals with selec-
tion of suitable hardware platform for device implementation.
Section IV describes the system architecture in detail. Modular
hardware concept, FPGA subsystem, Management subsystem
and Real-time application subsystem design are elaborated.
Section V brings conclusions and directions for future work.

II. PROBLEM STATEMENT, USE CASES, REQUIREMENTS

Modern motion control systems are designed in a distributed
manner. Central controller (PLC, PC, Motion Controller –
terminology depends on vendor) is managing motion trajectory
planning and higher level MIMO control loops (technology,
position, sometimes velocity). Sensors, actuators or devices
like servo drives (which integrates servo motor power stage,
encoder interface and torque/velocity/position control loops)
are connected to the central controller by means of high-
speed real-time data communication interface referred to as
a fieldbus. The most widespread fieldbus technologies for

high-end motion control are based on Ethernet standard –
EtherCAT [11], PROFINET [12] or POWERLINK [13].

Examples of such platforms are these provided by Beckhoff
(TwinCAT, EtherCAT), B&R (Automation Runtime, POWER-
LINK), Siemens (SIMOTION, PROFINET) or Omron (Sys-
mac NX/NY, EtherCAT) corporations. Distributed modular
I/O systems for each fieldbus with a wide variety of field
interfaces – analog and digital, encoders, communication –
are also available as a standard off-the-shelf products.

This paper deals with design of a modular signal processing
unit which can be integrated with standard motion control
systems as outlined above or with open platforms like the
one being developed in the I-MECH project [1] [10]. It
is intended for applications which requirements go beyond
standard I/O systems. Although EtherCAT is able to run
with communication cycle times under 50 µs [5] and central
controllers of platforms mentioned above are usualy based
on multicore x86-64 CPUs which provides large computing
performance, I-MECH applications proved there are situations
which can not be solved with standard I/O technology and
fully centralized computing. Here we provide a few examples
on this topic:

• Real-world implementation limits – EtherCAT itself can
handle very low cycle times, but practically not within
larger network or with larger data payloads. Also not
many commercial devices like servo drives are designed
for fieldbus cycle times under 125 µs.

• Latency sensitive sensor fusion and signal conversion –
Typical I-MECH use-case is input from multiple encoders
with analog sin/cos inerface to be sampled at 100 kSps
to 1 MSps rate and processed to a new “virtual sensor”
signal (based on machine kinematics or signal conditions)
for motor commutation in external servo drive or other
external system. Latency introduced by transmission of
such signals over fieldbus would break the control per-
formance.

• Local feedback loops critical on latency or reliability –
Feedback loops with very high sampling rates (above 20
kHz, i.e. 50 µs cycle) and total input to output latency
below one sampling period can be hardly closed in central
controller over fieldbus under real-world conditions [6],

978-1-7281-0303-7/19/$31.00 ©2019 IEEE 857

[8]. Another case is when some control loops are required
to run non-stop even if central controller is not available
due to algorithm reconfiguration or fieldbus failure.

• Application-level customization – The functions described
in the two points above are usually specific for each
machine or application. Thus these functions needs to
be defined or modified – customized – by application
engineer without assistance of platform vendor.

There are a few commercial platforms which can solve
this kind of tasks like NI CompactRIO [14] or Speedgoat
[15] which can be also integrated with Ethernet-based fieldbus
systems. But these are targeted more on prototyping or simu-
lation scenarios. Compared to that, our solution is designed
with cost-effectivity strongly in mind as it is intended for
deployment to machines produced in medium series.

Thanks to the best performance characteristics [7] and fully
open specification, EtherCAT fieldbus was selected as a basis
for I-MECH Reference Platform.

Based on the facts above and the I-MECH landscape which
details are out of this paper scope, basic requirements on the
proposed device can be defined:

• Modular architecture which allows tailored combination
of input/output interfaces for each application and easy
design of a new interface modules.

• Typical input signals: analog sensors sampled up to
40 kSps, encoders with analog sin/cos output sampled
at 1 MSps / quadrature output (S0S90) / BiSS-C [16]
digital communication protocol.

• Typical output signal: emulated encoder with quadrature
or BiSS-C slave output, analog sampled up to 40 kSps.

• Integration of wireless communication interfaces with
proprietary protocol based on various chipsets.

• EtherCAT device (slave) interface capable at least 20 kHz
cycle with processing latency as low as possible. Support
of other fieldbuses like PROFINET is an advantage.

• Full time synchronization from EtherCAT Distributed
Clock reference to all input/output sampling with sub-
microsecond precision.

• Easy deployment of customized data processing tasks.
• Optional use as a stand-alone controller with local I/O and

remote I/O over embedded EtherCAT master interface.
• Utilisation of standard operating system software would

be an advantage for management functions like web
server or firmware updates. Linux with RT (Real-Time)
extensions could be a good choice.

• Industrial-grade design, ready to mount into machine con-
trol cabinet, with respect to typical environment condi-
tions, industrial automation standards and best-practices.

III. HARDWARE PLATFORM SELECTION

Many requirements outlined above clearly lead to utilisation
of FPGA programmable logic for the following features:

• Interfacing of ADCs with very high sampling rates
(1 MSps), processing of quadrature encoder signals.

• Specialized communication protocols – like BiSS-C.

• Synthesis of virtual sensor signals (quadrature encoder).
• EtherCAT slave controller with tight integration to the rest

of system – implementation directly on FPGA provides
the lowest possible data latency.

• Precise control over timing and time synchronization of
all components.

Other requirements lead to utilisation of a standard CPU,
performance class of ARM Cortex -A or -R, preferably with
multiple cores, with hundreds MB of RAM, tightly integrated
with the FPGA.

Optimal combination of FPGA and CPU corresponding to
our requirements in a single chip is represented by System-on-
Chip (SoC) devices available from both major FPGA vendors
– Intel [17] and Xilinx [18] – in several performance classes.
These are highly suitable for industrial control applications [2]
[3] [4]. Due to a typical SoC hardware design complexity and
high-frequency design issues (e.g. DDR3 RAM) it is out of
our scope to design a complete SoC board from scratch. Also
many components needed would be hardly available in small
quantities. To save development effort, a few vendors provide
so called System-on-Module (SoM) boards which integrates
SoC device with all typical peripherals like power supplies,
clock, RAM, Flash, Ethernet and USB PHYs in the form of
compact module which can be easily integrated into custom
design.

In-depth market research was performed to compare
System-on-Modules from multiple vendors. Finally, the Mer-
cury platform from Enclustra company [19] was chosen. The
most important feature of this platform is compatibility of
module interface across Intel and Xilinx and across different
SoC classes. This allow us to design single type of carrier
board which can be freely combined with multiple types of
SoC devices from both vendors. Selected System-on-Modules
and their features are summarized in the table I. This is very
important as FPGA vendor (and related tooling) preference
is often strongly enforced by corporate policy and know-
how. Photo of such module with Intel Cyclone V series SoC
(Enclustra SA1) is in the figure 1.

IV. SYSTEM ARCHITECTURE AND DESIGN

A. Modular Hardware Concept

Proposed platform is intended to be used in a wide range of
applications which differs in types and number of required I/O
interfaces. User needs to choose suitable set of I/O modules
for particular application. Or even use the very minimal set
of modules, potentially tailor-made for the application, when
there is no need for rich I/Os but very limited space constraints.

Based on analysis of I-MECH project applications and
feature requests defined by application owners for future
applications, hardware architecture consisting of following
components – see also diagram in the figure 2 – arised:

CPU (Central Processing Unit) Board:
• System-on-Module board - with System-on-Chip, RAM,

Flash, and basic peripherals.
• Power input and main DC/DC power supply converter.

858

TABLE I
FEATURE COMPARISON OF SELECTED SYSTEM-ON-MODULE BOARDS

SoM type Mercury SA1 Mercury+ AA1 Mercury ZX5 Mercury XU5
SoC vendor Intel Xilinx

SoC class low-cost mid-range low-cost low-cost - mid-range

SoC series Cyclone V Arria 10 Zynq-7000 Zynq UltraScale+

CPU cores 2 × ARM Cortex A9 2 × ARM Cortex A9 2 × ARM Cortex A9 4 × ARM Cortex A53
2 × ARM Cortex R5

CPU clock 600 - 800 MHz 1000 - 1500 MHz 667 - 1000 MHz A53: 1200 - 1500 MHz
R5: 500 - 600 MHz

CPU RAM size 1024 MB 2048 - 4096 MB + ECC 1024 MB 2048 - 8192 MB + ECC

CPU RAM speed 3200 MB/s 7464 - 9600 MB/s 4264 - 5333 MB/s 19200 MB/s

Onboard flash 64 MB QSPI 64 MB QSPI, 16 GB eMMC 64 MB QSPI, 512 MB NAND 64 MB QSPI, 16 GB eMMC

CPU peripherals 2 × Gb ETH, 2 × CAN
2 × USB 2.0

3 × Gb ETH
2 × USB 2.0

2 × Gb ETH, 2 × CAN
2 × USB 2.0

4 × Gb ETH, 2 × CAN
2 × USB 2.0 / 3.0
Mali GPU, DisplayPort x2
PCIe Gen2 x4, SATA 3.1 x2

Onboard PHYs 1 × Gb ETH, 1 × USB 2.0 1 × Gb ETH, 1 × USB 2.0
1 × USB 3.0 device 1 × Gb ETH, 1 × USB 2.0 2 × Gb ETH (on PS, on PL)

2 × USB 2.0

FPGA capacity 85k - 110k LEs 270k - 480k LEs 74k - 125k LEs 103k - 256k LEs

FPGA speed cca 150 MHz cca 300 MHz cca 150 MHz cca 350 MHz

FPGA RAM size - - - 512 - 2048 MB + ECC

FPGA RAM speed - - - 4266 - 4800 MB/s

FPGA transceivers 6 × 3 Gb/s
PCIe Gen1 x4

12 × 10.3 / 12 Gb/s
PCIe Gen3 x8

4 × 6.25 - 6.6 Gb/s
PCIe Gen2 x4

none - 4 × 12.5 Gb/s
PCIe Gen3 x4

Dimensions 56 mm × 54 mm 74 mm × 54 mm 56 mm × 54 mm 56 mm × 54 mm

Unit price from 181 EUR, at 30 pcs 417 EUR, at 30 pcs 252 EUR, at 30 pcs 305 EUR, at 30 pcs

Fig. 1. System-on-module board with Intel Cyclone V SoC [19].

• Ethernet connectors and Ethernet PHYs – for EtherCAT,
connected to the FPGA, and for other services, connected
to the CPU.

• Service console interface on micro-USB connector.
• Basic diagnostics interface (LEDs, display, mode switch).
• MicroSD card slot.

Single variant of CPU Board for all selected System-on-

Module types (see table I) was designed, available pin count
and pinout compatibility was verified.

Submodule Boards:
Can be mounted directly on CPU Board to provide various

additional interfaces which do not need so many signals and
large space like standard I/O Cards (see below). Due to limited
space on CPU Board and differences in interfaces available at
individual SoC variants (for example fast serial transceivers
and functions like PCIe, SATA, USB 3.0), these interfaces are
routed to Submodule Boards space and provides an additional
layer of flexibility. Multiple types of I/O Boards are already
designed to cover typical basic interfaces provided by SoCs:

• USB 2.0 Host.
• CAN bus (1 or 2 channels).
• RS-422 / RS-485 interface (1 to 3 channels).

Backplane Board:
Allows connection of multiple (up to 6) I/O Card Boards to

the system. Provides passive distribution of total 72 dedicated
FPGA signals from CPU Board to individual I/O Card Boards
– 12 signals per card in case of 6-Slot Backplane, 36 signals
per card in case of 2-Slot Backplane. Multiple power supply
rails, service and diagnostics signals are also available at each
Card Slot. Two types of Backplane Board with 2 and 6 Slots
was designed.

859

FPGA SoC System-on-Module
Enclustra Mercury / Mercury+

Intel / Xilinx
FPGA with ARM cores, RAM, Flash, Ethernet, USB, RTC

CPU
BOARD

1 Gb/s
Ethernet

100 Mb/s
Ethernet

100 Mb/s
EthernetmicroSDmicro USB

Console

LEDs, 7-Seg Display
Operation Mode Switch

USB - UART

10 - 30 V DC
Power Input

C
P

U

C
P

U

C
P

U

F
P

G
A

F
P

G
A

5V

D
C

/D
C

BACKPLANE
BOARD

I/O Card
Slot 1

I/O Card
Slot 2

I/O Card
Slot 3

I/O Card
Slot 4

I/O Card
Slot 5

I/O Card
Slot 6

F
P

G
A

72

12 (36) 12 (36)12 12 12 12

I2
C

G
P

IO

SUBMODULE SM1

SUBMODULE SM2

PWR

I2C MUX 1:6

I2
C

SUBMODULE SM3
Or double-size SM2

MGTs (Transceivers)

FPGA, I2C, VCC, 5V

USBs Host/OTG

Variants:
 RS-485, RS-232, CAN, Digital IO ...

6
6

Variants:
 RS-485, RS-232, CAN, Digital IO ...
 n × Gb Ethernet (SGMII) / SFP,
 PCIe, SATA, DisplayPort, USB3 ...

5V
PWR, 5V, VCC_IO

VCC_IO (1.8V/3.3V)

 depends on System-on-Module

Variants: 2 / (4) / 6 slots

PHYPHY

Or extended-size SM2

I2C for each Slot

I/O
CARD
BOARD

I/O
CARD
BOARD

I/O
CARD
BOARD

I/O
CARD
BOARD

I/O
CARD
BOARD

I/O
CARD
BOARD

JTAG

F
P

G
A

License
CPLD

Fig. 2. Proposed modular hardware structure diagram.

I/O (Input / Output) Card Boards:
Provides interfaces to external analog, digital and commu-

nication signals of various types. Typical I/O Card contains
physical inputs (connectors, terminals), diagnostic indicators,
input protection, signal conditioning, conversion and electrical
isolation to logic signals suitable for direct connection to the
FPGA. Multiple types of I/O Boards are designed to cover
requirements for all types of signals, for example:

• Universal Digital In/Out, IEC 61131-2, 16 channels.
• Analog In, 8 channels, ±10 V / 0-21 mA, 24-bit Sigma-

Delta ADCs, up to 40 kSps sampling rate.
• Analog Out, 4 channels, ±10 V / ±24 mA, 16-bit DAC,

5 µs settling time.
• Sin/Cos Encoder Input, 2 × 2 channels, 1.3 Vpp differ-

ential, 14-bit ADC, up to 1 MSps sampling rate.
• RS-422 In/Out, 2 + 2 channels, up to 50 Mbps.
• Wireless Transceiver with EFR32 2.4 GHz chipsets, sup-

port of various standard or proprietary protocols.

B. FPGA Subsystem

For many functions with required level of performance and
flexibility, implementation on FPGA is the only choice:

• Processing signals from/to I/O Cards, create process-
image data abstraction over them. From simple digital
inputs to control of AD / DA converters and digital filters.

• Connection to upper layer by EtherCAT communication
protocol. EtherCAT Slave Controller is implemented in
the FPGA for the best possible performance.

• Control of data exchange between process-images of
individual I/O Cards, process-images of EtherCAT, and
optionally process-images of real-time application run-
ning on ARM CPU cores.

System-on-Chip

...

FPGA Fabric ARM

Generic signal (vector)

Memory-Mapped interface - DATA plane Memory-Mapped interface - CONTROL plane

SYNC signal(s)

I/O Card 1

I/O Card N

2x Ethernet
PHY

100 Mb/s

Interconnect

CPU0 CPU1

I/O Component N

I/O Component 1

Sync
Generator

Sys. Descr.

L2 Cache

EtherCAT Slave

Process
Data

Mapper

DDR
Memory Ctrl.

Customization Interfaces (MM / Stream / logic)

CUSTOM
COMPONENT

(IRQ)

...

Fig. 3. FPGA Subsystem top level structure.

• Control of system sample timing. In high-performance
feedback control applications, everything from input sam-
pling over filters, communication, control algorithms and
output latching should be executed in periodic cycle
synchronized across the whole plant.

• Optionally, application-specific components can be inte-
grated into the FPGA Subsystem which should provide
suitable tooling for such task. Typical example is data fu-
sion from multiple sensors and nerly-zero latency output
of the computed value as a “virtual sensor”.

FPGA System is modelled as a hierarchical set of Compo-
nents (IP Cores in FPGA terminology). Top level of hierarchy
is outlined in the figure 3. Several types of interconnect
between top level IP Cores are defined:

• CONTROL plane – Dedicated for non real-time service
communication (initialization, parametrization, diagnos-
tics), each component has one MM-Slave port, everything

860

is connected to one MM-Master port on ARM CPU.
• DATA plane – Dedicated purely for real-time critical

transport of process data, with no other interference.
Each component has typically one (can be more) MM-
Slave port. Central component of DATA plane is the
Process Data Mapper IP Core (or even multiple instances
of it to increase throughput) with multiple MM-Master
ports connected to: I/O Component IP Core instances,
EtherCAT Slave Controller, ARM CPU L2 Cache port.
Each I/O component provides set of input and/or output
registers representing outside physical signals values –
process data

• SYNC plane – As desribed above, special care needs
to be given to time synchronization of all data-related
components. In our system design, all cyclic timing
is coordinated by the Sync Generator IP Core, which
provides configurable timing signals to all subordinate
components. External signal, typically from EtherCAT
Distributed Clock, can be used as a master clock for the
Sync Generator.

I/O Component IP Cores:
These IPs implement interface to outside real-world signals

through I/O Cards. Each I/O Card type needs its own imple-
mentation. Standard internal interfaces of I/O Component are:
set of discovery and configuration registers on a CONTROL
plane; set of input and output process data registers on a
DATA plane; one or more SYNC inputs, used for example to
trigger sampling, or even to clock external devices like ADCs
synchronously with master clock.

I/O Component can also provide Customization Interfaces
which can be used to connect Custom Components with
application-specific logic. This is the way how Custom Com-
ponents can interact with external signals. Depending on use-
case, this interface can be in form of plain logic (vector)
signals, streaming or memory-mapped.

Sync Generator IP Core:
Sync generator provides vector or widely configurable Trig-

ger signals to all other components which can be used to
trigger sampling, data transfer, interrupt in ARM CPU, or even
clock for example external ADC. Master clock from EtherCAT
or other sources can be used to synchronize all generated
signals.

The core of the Sync Generator is timestamp counter. It
counts with every FPGA base clock period which is 10 ns:

• normally, increment timestamp by 10,
• if master clock is fast, incmement timestamp by 11 every

n-th period,
• if master clock is slow, incmement timestamp by 9 every

n-th period.
Thus timestamp provides absolute time value with 1 ns

resolution. Correction-th period is generated by a control loop
with master clock reference.

Output of Sync generator is vector of Triggers based on
timestamp. Start time and period of each Trigger can be
individually configured over CONTROL plane registers.

Process Data Mapper IP Core:
Process Data Mapper is controlled by Trigger(s) from Sync

Generator. It handles bidirectional data copying between I/O
Components and all other targets – EtherCAT Slave Controller
memory, ARM L2 Cache and Custom Components. Which
data are copied at which Trigger can be configured during
runtime by descriptor table available at CONTROL plane
registers

Implementation is based on a Scatter-Gather DMA. DMA
channel is used to copy actual data, DMA prefetcher com-
mands DMA channel based on Triggers, and Descriptor mem-
ory contains configuration and state: Trigger mask, Source
address, Destination Address, Transfer length, Control word.

When any Trigger input is activated, DMA prefetcher scan
through descriptor table. If the Trigger inputs match the de-
scriptor mask, the descriptor is executed in the DMA channel
and data are copied from source address to destination address.
Depending on control word, source and destination addresses
can be incremented until Mapper restart. This architecture
is very flexible and allows many patterns like oversampling,
when given input channel is sampled n-times faster than
EtherCAT communication cycle and all individual sub-samples
data are then transferred in one communication cycle.

C. Management Subsystem

In scope of proposed device, important set of functional
requirements exists outside FPGA and real-time domain,
mostly to cover system lifecycle management and servicing
in industrial environment, notably:

• System bring-up, initialization and configuration of
FPGA modules according to configuration data.

• Firmware updates (FPGA, real-time application, system
configuration data) over several protocols (FoE - File-
over-EtherCAT, HTTP, eventually others).

• Asynchronous (non real-time, non cyclic) communication
of diagnostics and auxiliary data, protocols like OPC UA
or HTTP REST.

• Optional extensions like basic commissioning web-
interface for quick diagnostics without (or not yet con-
figured) upper layer system.

These functions are more or less coupled with real-time
domain, but most of them requires, or at least strongly benefits
from, services provided by operating system like filesystem,
IP network stack or multiple task scheduling.

Linux operating system with PREEMPT-RT real-time ex-
tension was chosen as a base for Management Subsystem. It
is well supported on all of our SoC platforms and provides
access to wide ecosystem of related open source projects.

Thanks to RT extension, also less demanding real-time con-
trol tasks, with about 1 ms cycle time, can be reliably executed
as a part of Management Subsystem. Several measures can
be done to improve real-time characteristics of critical task
execution under RT Linux: CPU core isolation only for that
task, interrupt threads priority and CPU affinity and L2 cache
allocation policy. Even with all these tuning, scheduling jitter
of real-time task introduced by adjacent non-real-time load and

861

ARM Cortex-A9
Processing Core

L1 Data

Cache

32 KB

Instruction

Cache

ARM Cortex-A9
Processing Core

L1 Data

Cache

32 KB

Instruction

Cache

Snoop Control UnitACP

S0 S1

M0 M1

L2 Cache Controller

S0 S1

M0

M1

DDR Controller

S0

S1

S2

L3 Interconnect

M0 M1

M2

S1

M3

M4 S2M5

On-Chip RAM

S0

On-Chip ROM

S0

H2FLW H2F F2H

FPGA

S0 S1 M0 M1

Fig. 4. High-Level Structure of Intel Cyclone V SoC.

in-kernel operations is about 100 µs worst-case for bigger than
trivial task according to our tests. Practically, this do not allow
cycle time shorter than about 200 µs.

D. Real-time Application Subsystem

Performance limits of Linux task scheduling described in
previous section directed us to an another solution for running
real-time applications on the ARM CPU next to Linux OS.
Higher level of isolation can be reached by dedicating 2nd
CPU (CPU1) fully to the real-time application running as a
“bare-metal”, i.e. out of Linux control without any operating
system, next to standard Linux on CPU0. This approach is
called Asymmetric Multiprocessing (AMP) and it can provide
required performance level on our SoC platform [9].

Our solution is based on Linux kernel driver (module) to
enable on-the-fly configuration of the 2nd CPU core. Linux
driver provides file-based interface to configure and commu-
nicate with AMP core. It is responsible for managing core’s
state, constructing virtual memory structures, communicating
with AMP core and parsing RT-application’s executable file
(if ELF file is used). This part is really low-level and differs
between SoC variants. We have started with Intel Cyclone V
with dual-core Cortex A9 (ARMv7). Other selected variants
are very similar, with except to Xilinx UltraScale+ based
on newer ARMv8 architecture and has completely different
structure and cache coherency mechanisms.

Interaction between CPU0 (Management Subsystem), CPU1
(Real-time Application Subsystem) and FPGA Subsystem is
outlined in the figure 5 and can be described as follows:

Fig. 5. Structure and interaction of proposed AMP setup.

• CPU0 is responsible for SoC boot, using U-Boot boot-
loader, downloading configuration into FPGA and ini-
tialization of FPGA components according to applica-
tion configuration and parameters received from fieldbus.
Linux is configured to keep CPU1 on reset during boot.

• CPU1 can be initialized by loader running on CPU0.
Loader configures virtual memory (different size pages
and sections are utilized to eliminate TLB misses), down-
loads configured executable file to it and starts CPU1.

• Code on CPU1 is responsible for core initialization
(caches, FPU, interrupts) and application execution. Typ-
ically one cyclic task on CPU1 is triggered by interrupt
from FPGA or by ARM timer. Process data communi-
cation with outside world is managed by Process Data
Mapper in the FPGA, which has direct coherent access to
the ARM L2 cache by means of Acceleration Coherency
Port (ACP, see figure 4).
Data access consistency is naturally secured by cyclic
operation: input sampling – copy from FPGA I/O to L2
cache – interrupt from FPGA – feedback loop calculation
and writing results to L2 cache – cycle time check and
overrun detection from ARM side – copy from L2 cache
to FPGA I/O. Alternatively some kind of triple-buffer can
be implemented in the FPGA for data consistency.

• For asynchronous control and diagnostics of real-time
application, bidirectional shared memory mailbox inter-
face is implemented between CPU0 and CPU1. This is
implemented as multiple unidirectional FIFO (first-in-
first-out) queues which takes advantage of asynchronous
inter-processor-interrupts. FIFOs can be used to transport
stdin / stdout / stderr streams from CPU1 application
to CPU0 and for non-real-time diagnostics like online
parameters tuning or data tracing.

CPU core can configure only its own interrupt interface,
therefore every AMP core is responsible for configuring its
interrupts. Bringing up caches and Memory Management Unit
(MMU) can be done only by the core itself via coprocessor
configuration interface. To bring up AMP core it is neces-
sary to have direct access to the address on 0x00000000,

862

this memory region is reserved during bootup and special
“trampoline” code is copied to this region. This code directs
AMP core to the RT application code. When reset signal
is removed the AMP core is not configured to use caching
mechanisms, therefore it is necessary to flush L1 and L2
caches after deploying core’s target code. Only the processing
core itself can fully configure itself, therefore RT application
is responsible for invalidating and enabling cache, configuring
interrupts and enabling MMU (if it is necessary).

So far, we have working prototype which proved feasibility
of this approach and first performance tests indicates no
problems with expected performance level for control tasks
at 50 µs cycle period next to the Linux on CPU0.

V. CONCLUSION AND FUTURE WORK

This paper presented a new modular hardware platform
designed for high-performance I/O level signal processing
mostly in motion control applications. Thanks to a modern
System-on-Chip semiconductor device which integrates FPGA
programmeble logic and multiple ARM CPU cores, our solu-
tion is very simple on hardware side and thus cost effective
for embedding into machines produces in medium series. By
integration of all data procesing including EtherCAT Slave
Controller into a single chip, data latency is reduced to the
minimum.

Architecture of FPGA part allows full time and frequency
synchronization of all data-related parts with master clock
from EtherCAT fieldbus or other source. Process Data Mapper
component allows flexible, runtime configurable, composition
of process data image between I/O nterfaces, EtherCAT and
local control application running on dedicated ARM CPU core.

Linux operating system with RT extension is used on one of
the ARM CPU cores for management purposes. This brings us
features like filesystem, TCP/IP stack and ecosystem of open-
source tools at no additional costs. Advanced diagnostics and
data interfaces like web server or OPC UA can be built easily
on top of Linux.

To overcome fundamental performance limits of real-time
tasks scheduled by Linux, Asymmetric Multiprocessing ap-
proach, which dedicates one CPU fully to real-time computing
task out of Linux sheduling, was explored and partilly verified.

Further effort should be made on performance verifica-
tion and optimization of FPGA components and EtherCAT
fieldbus. Integration workflow for custom FPGA components
needs to be specified with respect to high-level synthesis and
simulation tools used by control system engineers. Perform-
nace of Asymmetric Multiprocessing technology should be
verified with much more details. Some API for process data
and parameters access and integration workflow needs to be
defined for real-time application code.

ACKNOWLEDGMENT

This work was supported by the H2020 ECSEL JU grant
agreement No. 737453 I-MECH project “Intelligent Motion
Control Platform for Smart Mechatronic Systems” and the
project LO1506 of the Czech Ministry of Education, Youth

and Sports under the program NPU I. The support is gratefully
acknowledged.

REFERENCES

[1] M. Cech, A-J. Beltman, K. Ozols. “I-MECH – Smart System Integra-
tion for Mechatronic Applications”. Proceedings of IEEE ETFA 2019,
Zaragoza, Spain, Zaragoza, 2019. Paper In Press.

[2] C. Economakos, G. Kiokes and G. Economakos. “Using Advanced
FPGA SoC Technologies for the Design of Industrial Control Ap-
plications”. 2015 6th International Conference on Information, Intel-
ligence, Systems and Applications (IISA), Corfu, 2015, pp. 1-6. doi:
10.1109/IISA.2015.7388129

[3] L. Gomes, E. Monmasson, M. Cirstea and J. J. Rodriguez-Andina.
“Industrial electronic control: FPGAs and embedded systems solutions”.
IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics
Society, Vienna, 2013, pp. 60-65. doi: 10.1109/IECON.2013.6699112

[4] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan and
M. W. Naouar. “FPGAs in Industrial Control Applications”. In IEEE
Transactions on Industrial Informatics, vol. 7, no. 2, pp. 224-243, May
2011. doi: 10.1109/TII.2011.2123908

[5] D. Orfanus, R. Indergaard, G. Prytz and T. Wien. “EtherCAT-
based platform for distributed control in high-performance industrial
applications”. 2013 IEEE 18th Conference on Emerging Technolo-
gies & Factory Automation (ETFA), Cagliari, 2013, pp. 1-8. doi:
10.1109/ETFA.2013.6647972

[6] J. Jasperneite, M. Schumacher and K. Weber. “Limits of increasing the
performance of Industrial Ethernet protocols”. 2007 IEEE Conference on
Emerging Technologies and Factory Automation (EFTA 2007), Patras,
2007, pp. 17-24. doi: 10.1109/EFTA.2007.4416748

[7] G. Prytz. “A performance analysis of EtherCAT and PROFINET
IRT”. 2008 IEEE International Conference on Emerging Technolo-
gies and Factory Automation, Hamburg, 2008, pp. 408-415. doi:
10.1109/ETFA.2008.4638425

[8] X. Wu and L. Xie. “End-to-End Delay Evaluation of Industrial Au-
tomation Systems Based on EtherCAT”. 2017 IEEE 42nd Conference
on Local Computer Networks (LCN), Singapore, 2017, pp. 70-77. doi:
10.1109/LCN.2017.14

[9] X. Chen, Y. Gu, C. Wang and X. Guan. “Asymmetric multiprocessing for
motion control based on Zynq SoC”. 2016 International Conference on
Field-Programmable Technology (FPT), Xi’an, 2016, pp. 315-318. doi:
10.1109/FPT.2016.7929570

[10] I-MECH Consortium. “I-MECH – Intelligent Motion Control Platform
for Smart Mechatronic Systems”. [Online]. https://www.i-mech.eu/

[11] EtherCAT Technology Group. “EtherCAT – the Ethernet Fieldbus”.
[Online]. https://www.ethercat.org/en/technology.html

[12] PROFIBUS & PROFINET International. “PROFINET – the lead-
ing Industrial Ethernet Standard”. [Online]. https://www.profibus.com/
technology/profinet/

[13] EPSG. “ETHERNET POWERLINK”. [Online]. https://www.
ethernet-powerlink.org/

[14] National Instruments. “CompactRIO”. [Online]. http://www.ni.com/
compactrio/

[15] Speedgoat GmbH. “Speedgoat - real-time simulation and testing”. [On-
line]. https://www.speedgoat.com/

[16] BiSS Association e.V. i.G. “About BiSS” [Online]. http://biss-interface.
com/about-biss/

[17] Intel Corporation. “INTEL SOC FPGAs”. [Online]. https://www.intel.
com/content/www/us/en/products/programmable/soc.html

[18] Xilinx Inc. “SoC Portfolio”. [Online]. https://www.xilinx.com/products/
silicon-devices/soc.html

[19] Enclustra FPGA Solutions. “System-on-Chip Modules”. [Online]. https:
//www.enclustra.com/en/products/system-on-chip-modules/

863

Powered by TCPDF (www.tcpdf.org)

