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Abstract—The paper deals with the problem of anti-sway
control in human-operated gantry cranes. The goal is to design a
suitable algorithm aiming at minimization of unwanted transient
and residual oscillations of the manipulated load. A finite horizon
optimization is adopted for the derivation of an optimal open-loop
control strategy. The novelty of the proposed approach comes
from the combination of model-based predictive control and zero-
vibration input shaping methods. This allows utilizing some key
advantages from both fields in terms of performance, robustness,
constraints definition and simplicity of implementation. Exper-
imental case study demonstrates the proposed approach and
compares it to conventional input-shaping method.

Index Terms—vibration control, anti-sway control, gantry
cranes, optimal control, feedforward control, zero vibration
shaper, input shaping, model predictive control

I. INTRODUCTION

Gantry crane systems are used in numerous applications
ranging from factory automation to ship-to-shore container
terminals or building construction. One of their troublesome
properties comes from the inherently oscillatory dynamics
caused by the hanging load. Care must be taken when operat-
ing the gantry to avoid excessive sway of the load which may
cause unwanted collisions or damage of the cargo. Human
operated cranes require qualified personnel capable of high
accuracy handling.

Several automatic anti-sway control systems are being de-
veloped and integrated in the gantry equipment aiming at
reduction of the unwanted transient and residual oscillations.
The methods of Zero vibration (ZV) input shaping have
become one of the favorite approaches to accomplish this task
due to simplicity of use, robustness and possibility of operation
in an open-loop manner without additional instrumentation.
The fundamental idea is to properly modify the trajectory
of the gantry in a way that minimizes the level of motion-
induced oscillations of the hanging load. The pioneering work
in this field was done by Smith [1], followed by further
theoretical achievements in 1990s by Singer, Seering and
Singhose [2]–[4]. Numerous design methods emerged later
[5]–[10] with several successful applications in crane control
[11], [12]. Other proposed approaches involve input-output
inversion techniques [13], model-predictive control (MPC)
[14] or convex optimization [15]. An extensive survey of crane
control methods is given in [16].
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Fig. 1. Gantry crane system in the anti-sway control scenario

One of the drawbacks of the classical input shaping methods
comes from their inability to incorporate physical constraints
on the generated trajectory directly into the design require-
ments. This may lead to infeasible motions which cannot
be tracked by physical actuators. This problem is addressed
directly in MPC allowing to limit plant inputs, states and
outputs. On the other hand, MPC with its receding horizon
strategy belongs to feedback control strategies requiring ad-
ditional instrumentation to detect load motion, it comes with
much higher computational demands and does not allow to
directly include robustness requirements as in the case of ZV
shapers.

The main motivation was to connect the two fields of
optimal control and ZV input shaping and develop a design
algorithm which combines the best of both realms in terms of
robustness, simplicity and direct specification of actuator/plant
constraints. Section II formulates the considered anti-sway
control problem. Section III presents some fundamental ideas
from the ZV input shaping theory. Section IV comes with
the novel optimal design method which is experimentally
validated by means of a small-scale gantry system model, as
shown in Section V.

II. GANTRY CRANE MODEL

One axis of a portal crane system shown in Fig. 1 is
considered for the anti-sway control scenario. The goal is to
manipulate the overhead gantry based on the human operator



Fig. 2. Assumed control structure: r - velocity setpoint reference set
by a human operator, F - reference shaping filter, Pg - gantry subsystem
containing the internal velocity loop, C - velocity controller, M - gantry+drive
dynamics, Pld - load side dynamics, G - overall plant

commands while minimizing unwanted oscillations of the
hanging load.

A single-link pendulum model of the plant dynamics is used
for simplicity. However, multiple oscillatory modes can be
considered without loss of generality. The gantry is typically
equipped by a drive with a closed velocity control loop. It
is assumed that the closed-loop bandwidth is high enough to
attenuate potential disturbances generated by reaction forces
coming from the hanging load. The equation of motion can
be derived using the Lagrange formalism or Newton-Euler
equations in the form of

θ̈ +
b

ml2
θ̇ +

g

l
sin(θ) = −1

l
ẍ cos(θ), (1)

where θ denotes the load sway angle, x is gantry position
and m, l, b are the parameters of load mass, rope length and
damping. For small declination angles of the load around the
stable equilibrium θ ≈ 0, it holds that sin(θ) ≈ θ, cos(θ) ≈ 1
and the equation (1) reduces to a linear system approximation:

θ̈ +
b

ml2
θ̇ +

g

l
θ = −1

l
ẍ. (2)

Assuming a crane system with an internal velocity control
loop and applying the Laplace transform to (2), we obtain the
transfer function from the gantry speed to the load sway as:
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∆
=

Ks

s2 + 2ξωns+ ω2
n

;

ωn =

√
g

l
, ξ =

b

2m
√
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l
. (3)

A discrete-time equivalent suitable for sampled-data control
synthesis can be derived by applying bilinear Tustin transform

Pld(z) =
θ(z)

V (z)
= P (s)|

s=
2(z−1)
T (z+1)

, (4)

where Pld(z) is the discrete transfer function defined in
the Z-transform for a given sampling period T , V (z) =
Z{v(kT )}; v(kT ) = ẋ(kT ) is the actual gantry velocity and
θ(z) = Z{θ(kT )} is the load sway angle.

The velocity loop dynamics of the gantry drive is assumed
in the form of transfer function

Pg(z) =
V (z)

U(z)
=

b1z + b0
z2 + a1z + a0

z−d, (5)

where U(z) = Z{u(kT )} denotes the setpoint value of the
drive velocity controller. This is a generic form suitable for a
wide range of industrial crane systems when considering rigid
body dynamics of the gantry and a PI controller in the velocity
loop. The delay term models potential communication lag
between the drive and a supervisory controller. More complex
model structures may be introduced when needed.

Under assumption of negligible load to drive disturbances,
the overall dynamics of the system becomes

G(z) =
θ(z)

U(z)
= Pg(z)Pld(z). (6)

The reference values r for the desired gantry motion are set
by a human operator, typically in the ON-OFF fashion with a
given constant jog velocity value. A reference shaping filter F
is introduced to alleviate unwanted load oscillations. Overall
schematics showing the assumed control structure is shown in
Fig. 2. Derivation of the shaping filter F (z) follows in the
next sections.

III. CONVENTIONAL INPUT SHAPING

A common approach to design of the input shaper F in case
of an oscillatory plant is to employ a class of Zero Vibration
(ZV) shaping filters. Their structure usually consists of a set
of weighted sum of time-delays

F (s) =
U(s)

R(s)
=

n∑
i=1

Aie
−tis. (7)

The shaper parameters ti, Ai are commonly designed using
the residual vibration function (sometimes called sensitivity
function)

V (ω, ξ) = e−ξωtn
√
C(ω, ξ)2 + S(ω, ξ)2, (8)

where

C(ω, ξ) =

n∑
i=1

Aie
ξωti cos(ω

√
1− ξ2ti), (9)

S(ω, ξ) =

n∑
i=1

Aie
ξωti sin(ω

√
1− ξ2ti), (10)

determining the relative amplitude of the induced residual
vibrations at time t = tn [3], [4] for the flexible mode
described by the parameters of natural frequency and damping
ω, ξ.

In order to minimize the level of excited oscillations, the
Zero Vibration condition

V (ω, ξ) = 0 →
√
C(ω, ξ)2 + S(ω, ξ)2 = 0 (11)

must hold giving the necessary condition for the shaper
parameters. The residual vibration function (8) also serves
for the quantification of shaper robustness to uncertainty in
the model parameters ω, ξ. A common way to enhance such
robustness at a given mode is to enforce a flat slope of the
sensitivity function frequencies by imposing fist l derivatives
to be zero

∂lV (ω, ξ)

∂ωl
=0,

∂lV (ω, ξ)

∂ξl
=0. (12)



An alternative is to keep the level of vibrations below some
defined value using the inequality constraints

V (ω̄i, ξ̄k) ≤ V max, (13)

where ω̄i, ξ̄k denotes a set of points forming a region around
the mode ω, ξ which is to be compensated.

The Zero vibration filters were succesfully applied in many
application domains. Numerous design methods exist allowing
to find a suitable trade-off between robustness and delay intro-
duced by the shaper [9]. However, there are some fundamental
disadvantages which may prevent them to be used effectively
in crane motion control systems:

1) Standard design methods do not allow formulation
of constraints on the generated motion profiles, the
shaper may work in certain regimes but fail by hitting the
plant physical limits e.g. in higher speed regions thanks
to its structure of linear filter, the actuator resources are
not effectively used

2) The finite transient time which is often presented as
one of important benefits holds only for the oscillatory
modes of the system, there is no guarantee giving a final
transient time for the rest of the plant dynamics

The proposed novel design methodology tries to overcome
the mentioned drawbacks of the ZV shapers while preserving
their key advantages in terms of performance and robustness.

IV. FINITE HORIZON OPTIMAL CONTROL

The starting point is an arbitrary state-space form of the
overall plant G including both load and gantry dynamics (6)
without the delay term which does not affect the final solution:

x(k + 1) = Ax(k) + Bu(k),

z(k) = [θ(k), v(k), a(k), j(k)]
T

= Cx(k), (14)

where the vector z contains the penalized outputs defined as
the sway angle θ, gantry velocity v, acceleration a and jerk
j. The last two outputs can be defined in terms of numerical
differentiation

a(k) =
v(k)− v(k − 1)

T
, j(k) =

a(k)− a(k − 1)

T
. (15)

There always exists a finite time sequence of inputs

u
∆
= [u(0), u(1), ..., u(n− 1)]

T (16)

which allows a transfer from an arbitrary initial state x0 =
x(0) to an arbitrary final state xf = x(n) in a finite number
of n steps, provided that n ≥ o, where o = dim(x) is the
order of the system and the pair {A,B} is reachable.

The system can stay in the new state xf for an arbitrary long
time if and only if it belongs to the set of plant equilibrium
states and correct constant input is applied for k ≥ n. The
crane dynamics contains an infinite number of equilibrium
states corresponding to an arbitrary constant velocity of the
drive v(k) = const. and the load hanging in the lower stable
position θ(k) = 0 with zero angular velocity θ̇(k) = 0.

There is a unique solution for the time-optimal input se-
quence in the limit case n = o given as

u = Qr
−1(xf −Anx0), (17)

where Qr
∆
= [B,AB, ...,An−1B] is the (regular) reachabil-

ity matrix of the system and u is the input sequence vector
(16) in the reversed order of the input samples.

Such result is seldom applicable in practice as it typically
produces excessive control inputs and there are no additional
degrees of freedom allowing to formulate any complementary
design requirements.

On the other hand, an infinite number of solutions exist
for the case n > o. This allows to include some additional
constraints on system inputs, states or outputs, define a suitable
cost function and select one particular optimal solution.

The most important requirements to be considered for the
crane control scenario are as follows:
• Maximum velocity - given by the motor and drive system

propelling the gantry
• Maximum acceleration - given by the maximum

torque/force the motor can produce
• Maximum jerk - allows to enforce smooth motion

commands to avoid excitation of unmodelled dynamics,
improves energy efficiency and lowers mechanical wear

• Maximum load sway angle - to guarantee safe manip-
ulation with the hanging load

Time evolution of the mentioned physical quantities can be
expressed from the general solution of the state and output
equation in (14)

z(k) = CAkx(0) + C
[
A(k−1)B, ...,AB,B

]
u (18)

The important physical plant/actuator constraints can be
expressed as

|zi(k)| ≤ zmaxi ∀k = 1..n, i = 1, .., 4, (19)
umin ≤ u(k) ≤ umax, ∀k = 0, .., n− 1, (20)

a(k) ≥ 0 or a(k) ≤ 0,∀k, (21)

giving maximum absolute value bounds, limits for the gener-
ated setpoint sequence and condition of monotonous response.
All of them can be translated into the inequality constraints:

Ainequ ≤ Bineq. (22)

A quadratic cost function penalizing the transient maneuver
can be chosen as:

J(u) =

n−1∑
i=0

eTi Qiei + riu
2
i (23)

where ei is a vector of setpoint tracking errors defined as

ei = w(i)− z(i); w(i) = [0, vf , 0, 0]
T ∀i, (24)

with the constant reference vector w defining the final equilib-
rium state at the given constant velocity vf set by the human
operator, Qi ≥ 0 is a positive semi-definite matrix penalizing
the individual outputs and ri > 0 penalizes the control input.



The cost function can be rearranged to the form of

J(u) =
1

2
uT (HTQ′H + R)︸ ︷︷ ︸

∆
=F

u+
(
(xT

0 P
T − wT )Q′

)
H︸ ︷︷ ︸

∆
=gT

u,

(25)
where Q′ ∈ R4n×4n is a block-diagonal matrix consisting of
the Qi matrices, R ∈ Rn×n is a diagonal matrix containing
the ri terms and H,P are the prediction matrices defined as

P
∆
=
[
C CA CA2 . . . CAn−1

]T
, (26)

H
∆
=


0 0 0 . . .

CB 0 0 . . .
CAB CB 0 . . .

CA2B CAB CB
...

CAn−2B CAn−3B CAn−4B . . .

 .
The optimal solution can be found by minimizing the cost

function

u∗ = argmin
∀u

{J(u) =
1

2
uTFu + gTu} (27)

w.r.t.Aequ = Beq, Ainequ ≤ Beq, umin ≤ u ≤ umax,
(28)

which is a standard quadratic programming problem. There is
one globally optimal solution due to the positive definiteness
of F which follows from it’s construction provided that the
formulated constraints lead to a non-empty set of feasible
solutions.

The problem formulation corresponds to the standard linear
model predictive control (MPC) up to this point for a special
case of identical prediction and control horizon. The main
difference is that the MPC approach adopts a receding horizon
strategy which repeats the optimization at each sampling
instants and applies only the first input. In our approach,
the optimization is performed off-line only once and the
resulting optimal sequence is stored in the target control
platform, ready to be used in the open-loop manner once the
operator command arrives.

The second difference comes from the constraint on reach-
ing the new equilibrium state at the last time instant, i.e.

x(k) = xf , z(k) = w ∀k ≥ n, (29)

which is not normally used in MPC and which adds another
equality constraints in the quadratic optimization problem
(28). This allows to achieve a finite settling time for the
whole plant, not only the flexible modes as in the case of
conventional ZV shapers.

The last difference is in the introduction of robustness
to modelling errors which is normally not covered in the
standard MPC problem formulation.

Proposition 1. The robustness to uncertainty in plant param-
eters ω, ξ can be achieved analogously to the standard ZV
shaper design methods via the sensitivity function constraints
(12,13) assuming a discrete FIR filter structure

F (z) =
U(z)

R(z)
=

n∑
i=1

Aiz
−(i−1), (30)

and its impulse response coefficients related to the optimal
input sequence u∗ in (27) as follows

A1 = u∗(0), Ai = ∆u∗(i− 1) = u∗(i− 1)−u∗(i− 2), i = 2, .., n
(31)

Proof. The filter F from Fig. 2 constructed according to
(30,31) with a dummy constant reference signal r(k) = 1∀k
generates the shaped input sequence

u(k) =

k+1∑
i=1

Ai, (32)

which is equivalent to the optimal solution u∗ obtained from
the quadratic optimization. Therefore, additional equality or
inequality constraints in (28) can be used to enforce the
robustness via residual vibration function shaping as in the
case of robust ZV shapers.

Time-optimal trajectory can be derived by forming a mod-
ified optimization problem

u∗t = min(n)
∀n

{argmin
∀u

{J(u) =
1

2
uTFu + gTu}}. (33)

which searches for the minimum achievable length n for which
a feasible solution exists.

Algorithm 1 Finite horizon optimal control algorithm
Input: Plant model G, input/state/output constraints (e.g. ac-

tuator velocity, acceleration, jerk, load sway...)
Output: Optimal input sequence / equivalent shaping filter F

1: Set initial state x0 and final equilibrium xf

2: Set physical constraints
3: Set transient time n / opt for the time optimal solution
4: (Optional) Formulate robustness conditions via residual

vibration function shaping (12,13)
5: Choose cost function weights Qi, ri (23)
6: Solve the QP problem (27) or (33)
7: Store the resulting optimal input u∗ or the equivalent

shaping filter F (30,31) in the target real-time platform
8: Apply the precomputed trajectory based on the operator

commands

V. EXPERIMENTAL RESULTS

A pendulum-cart system (Fig. 3) was used as a small-scale
model simulating the gantry crane dynamics. The cart is driven
via a toothed belt from a three-phase AC induction motor.
Current and velocity loop in the standard PID cascade control
scheme is realized by YASKAWA AC Drive-A1000 frequency
inverter. The tested input shaping filters are implemented in
REXYGEN control system [17] running on Raspberry Pi with
Monarco HAT as an input-output interface. Cart position and
payload sway angles are measured using incremental encoders.
The load angle was not used for feedback control, it serves
for the validation purpose only.

The motor dynamics was approximated by the second
order model (5) with parameters obtained from frequency
response function (FRF) fitting. The FRF data were acquired



Fig. 3. Mechanical system used for the experiments

from the preceding nonparametric identification process based
on spectra averaging of periodic signals. The identification
procedure results in following state space model

xmk+1 =

[
0 1

−0.5646 1.4920

]
xmk +

[
0
1

]
vSPk ,

vk =
[
−0.262 0.0434

]
xmk . (34)

The pendulum model parameters were derived from time-
domain identification method from system response to non-
zero initial conditions leading to model (3) with parameters
ωn = 4.2167 rads , ξ = 0.0079, l = 0.552m and its discrete
approximation (4).

The serial connection of both parts (motor and pendulum
dynamics) then forms the total plant model G (6) which was
used for the design of input shapers and the simulations. The
command signal without any filtering and three different input
shapers were used during the experiments. The time plots of
the generated setpoint commands are shown in Fig. 4. Two fil-
ters were derived from finite horizon optimal control approach
with and without positive cart acceleration constraint (21) re-
spectively depending on whether we desire monotonous gantry
velocity response or not. For the purpose of performance
comparison with commonly used solutions, the standard Zero
Vibration Derivative (ZVD) filter was implemented and the
system was also excited by raw reference signal without any
filtering.

The plots of data obtained from simulations with nom-
inal plant realized in MATLAB-Simulink environment are
displayed in Fig. 5. The curve colours correspond to Fig.
4 with the horizontal magenta dashed lines denoting the
minimum and maximum limits of cart acceleration and jerk
used as the constraints (19) in the optimization procedure
(amax = 1ms2 , jmax = 40ms3 ). A minimum energy solution was
found by setting Qi = 0, ri = 1 in the quadratic cost (23).
First order flatness of residual vibration function was enforced
from (12),(31) for l = 1 to improve robustness to modelling
errors.

We can observe very good attenuation of oscillations when
using all the considered command shapers compared to the
case when no filter is used. At the same time, we can see
that the acceleration and jerk constraints are precisely satisfied
when using the optimal control approach but we have no
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Fig. 4. Input signal

guarantee of meeting these limits when using the ZVD filter.
The non-monotonous shaper achieves slightly faster settling
times (approx. 0.2s) as shown in Fig. 5, exact finite-time
transients are achieved for the whole plant.

The experimental results are given in Fig. 6. The plots
are splitted into two parts by the vertical magenta dashed
as proper time synchronization of the individual manoeuvres
(i.e. acceleration and deceleration of the cart) was needed to
directly compare different shapers. We can notice a slightly
different behaviour of the real physical system compared to the
simulations. This is mainly caused by unmodelled dynamics
(mechanical friction, toothed belt dynamics). Nevertheless,
the oscillation suppression is satisfactory for all the used
shapers. The cart acceleration had to be computed by double
differentiation from the measured cart position. A smoothed
signal produced by zero-phase (non causal) Butterworth filter
is shown to avoid excessive amplification of the quantization
noise. It is seen that the acceleration limits are met almost
exactly when using the optimal control sequence which is not
the case of the trajectory generated by ZVD filter. The jerk
measurement is not included as it is hard to be reconstructed
from noisy position readings.

Fig. 7 shows the results after the previously described
experiments were repeated on the physical system perturbed
by shortening the pendulum length to half resulting in the
change of natural frequency of the system. Degradation of
performance is observed because of imperfect knowledge of
the model parameters. The optimal shapers achieve similar
level of robustness as the ZVD filter but generate smoother
motion commands leading to physically feasible trajectories
respecting the formulated actuator and plant limits.

VI. CONCLUSIONS

The paper presents a novel design method suitable for
generation of optimal motion trajectories for human-operated
gantry cranes. The proposed approach combines the quadratic
optimization technique known from the field of MPC and
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Fig. 5. Simulation results
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Fig. 6. Experiments with nominal plant

robust design methods used in the ZV input shaping. This
allows to generate feasible motion trajectories reproducible by
physical hardware while fully utilizing the available actuator
resources. Optimal behavior can be achieved in various op-
erating regimes by solving the design problem for different
jog velocities and rope lengths. Finite-time transients are
achieved for the whole plant, not only the part of the flexible
dynamics. Specified level of robustness is imposed by shaping
the residual vibration function. Future work will address the
possibility of handling non-zero initial conditions, e.g. for
rapid safe-stop movements, and multiple resonance modes of
the system. ACKNOWLEDGMENT
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