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Introduction
The learning from data and information has led to 
impressive achievements in recent years. Computer 
algorithms are now capable to successfully learn in many 
domains, including human language, ranging from speech 
recognition to accurate translations, real-time pattern 
recognition from images, digital advertising, self-driving 
vehicles, Atari, and Go [1]. The key enabler has been the 
availability of large amounts of data as well as ubiquitous 
and scalable computation and software. 

In sharp contrast, high-tech mechatronic systems, such 
as manufacturing machines and scientific instruments, 
are often produced and installed with a pre-defined 
feedforward/feedback control algorithm, and their 
performance deteriorates over time due to wear, ageing 
and varying environmental conditions such as temperature 
variations. Examples range from lithography machines, 
2D and 3D printers and pick & place robots, to microscopes 
and CT scanners. 

Interestingly, these high-tech machines are prime examples 
of mechatronic system design, where control algorithms are 
typically implemented in a computer environment. Hence, 
over the lifetime of these high-tech machines, an abundance 
of data becomes available, yet this is often not exploited to 
enhance its performance. Indeed, sensors in mechatronic 
systems are often used for feedback control, which typically 
only makes use of real-time position and velocity 
information. 

The aim of this article is to explore opportunities for 
learning from data in machines, possibly from past and 
already completed tasks, to control them to the limit of their 
physical capabilities. A framework for fast and safe learning 
is presented. Furthermore, at the end of the article, several 
practically relevant questions are addressed, including what 

should be done for a broad industrial deployment, what 
performance can be expected for a specific system at hand, 
and whether learning control can replace traditional 
feedback controllers. 

Learning requirements
Learning in machines imposes several unique requirements, 
resulting from the fact that such machines are cyber-
physical systems, involving interactions with the real world. 
In particular, the following requirements are considered 
throughout:
1.   Learning should be fast, since machines require 

experiments in real-time. In addition, fast adaptation 
can be useful in case of varying operating conditions, 
e.g., due to temperature changes induced by motor 
heating or day/night periodicity. 

2.   Learning should be safe and use operational data, since 
dedicated experiments may induce production loss and 
even damage of the machine. 

In the forthcoming sections, an approach to learning 
in machines is investigated that addresses these 
requirements.

Learning from past tasks
The aim of this section is to investigate the learning from 
data. This leads to an approach that bridges data-based 
learning and model-based control.

Traditional motion control
The printer in Figure 1 is considered as a key example of 
a mechatronic system. Here, the goal is to position the 
carriage that contains the printheads. A motor delivers an 
input u, which moves the carriage using a belt. The output 
position of the carriage y is measured using a linear 
encoder. The printer itself is denoted G. 

Control of high-tech mechatronic systems traditionally involves feedback and 
feedforward control, and essentially only uses a few recent measurements. Here, 
we aim to explore what can be learned from all available sensor data. A general 
learning framework is developed that exploits the abundance of data of 
previously executed tasks. Both fundamental insight and experimental results 
show that such iterative learning control approaches enable substantial 
performance improvement compared to traditional control. Interestingly, 
traditional model-based control theory turns out to have an essential role  
for fast and safe learning from measured data. 
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The control task is to track a reference trajectory r, such that 
the printhead moves over a sheet of paper, see Figure 2. The 
control problem is thus to choose the control input u such 
that the error e = r – y is small. Traditionally, this is done 
using the controller structure shown in Figure 3. Here, C is 
a feedback controller. Feedforward control is implemented 
by selecting the signal f. A typical approach is to employ 
Newton’s second law, f = m·a, where m is an estimate of 
the mass and a = d2r/dt 2 is the acceleration profile. 

Motion control tasks are often performed repetitively. 
For example, the reference in Figure 2 has to be performed 
many times before a sheet of paper is printed: during each 
repetition of the reference in Figure 2, the sheet is moved 
a few millimeters by a sheet-positioning mechanism. The 
typical performance of traditional feedback motion control 
for such repetitive tasks is shown in Figure 4. 

Here, ten tasks are shown, where in each task the reference 
in Figure 2 is tracked. The key observation is that the 
measured error is almost identical for each task j. Of course, 
feedforward control by selecting f can lead to a smaller 
error, but the key observation remains: the error is identical 
for each task, since the feedforward action f and feedback 
action Ce do not depend on past errors. 

Learning from task to task
The observation that traditional motion controllers lead to 
a very similar error profile in Figure 4 raises the question: 
can we learn from past tasks, to improve the performance 
in the next task, i.e., task j + 1? Intuitively, the answer is 
affirmative: since the error is predictable, it can be 
compensated for. The practical question is how this can 
be achieved. 

To learn from past tasks, assume that we perform the first 
task, j = 0, with no feedforward, thus f0 = 0. The resulting 
error during the first task e0 is then given by e0 = Sr. Here,  
S = 1/(1 + GC), the so-called sensitivity function, which 
can be directly derived from Figure 3. Now, consider the 
following idea. Assume that we measured e0, but we do not 
have access to r. What feedforward f1 should we select to 
reduce the error e1? Note from Figure 5 that:

 e1 = Sr – GSf1 

Next, two key steps are made. First, note that we do not 
have direct access to Sr, but in fact it was measured in the 
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Control architecture, where G denotes the system, C is the feedback 
controller, f is the feedforward input, r is the reference in Figure 2, 
and e is the tracking error. 
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earlier experiment: e0 = Sr. Second, let f1 depend on past 
errors, for instance:

 f1 = Le0

Here, L is a design filter that still has to be specified, 
see also Figure 5. These steps directly lead to:

 e1 = e0 – GSLe0

This last equation immediately shows that the choice  
L = (GS)–1 leads to e1 = 0. 

The update law f1 = Le0 with L = (GS)–1 combines the data e0 
with model knowledge GS. Indeed, L is based on a model of 
the true closed-loop system GS. The key benefit of learning 
from data is that an approximate model suffices: of course 
we cannot expect to have access to an exact model of the 
system. If the model is not exact, then GSL ≠ 1; so that e1 is 
not zero, but typically much smaller than e0. The central idea 
is to repeat the learning procedure in the next task j = 2:

 f2 = f1 + Le1

This essentially retains f1 if it is perfect (e1 = 0), and 
otherwise includes a small correction based on the already 
small e1. This is then also done for future tasks:

 fj +1 = fj + Lej

This idea of updating the control input is referred to as 
iterative learning control (ILC), see [2] for a historical 
overview. 

Experimental results
Application of this procedure to the printer system in 
Figure 1 leads to the measured error signals in Figure 6. 
These results reveal impressive control performance: the 
error is at the level of the encoder resolution after only a 
few tasks. Hence, this very simple learning update leads to 
extremely high performance by combining data and model 
knowledge. Interestingly, these performance levels cannot 
be achieved using traditional feedforward and feedback 
controllers due to the presence of significant friction in the 
system; even though the learning update is a simple linear 
model it can perfectly compensate for these effects. 

Can learning beat feedback?
Yes! The results in Figure 6 already reveal extremely high 
performance, which in practice cannot be achieved using 
traditional feedforward and feedback. The main reason is 
that feedback is subject to causality. This is well-known, 
since in e0 = Sr, the term S cannot be made equal to zero due 
to the Bode Sensitivity Integral, often referred to by control 
engineers as the waterbed effect. The fundamental reason 
this integral exists is due to the fact that the physical system 
G is causal: it only responds to past outputs. In sharp 
contrast, in learning, one has access to what will happen in 
the (near) future due to the simple observation that this has 
been measured in past tasks. In practice, this is done by 
designing L to be a non-causal filter; practical details are 
provided in [3].

Fast and safe learning in the face of uncertainty

The role of model quality for learning
The results in Figure 6 reveal that the feedforward 
command signals that result from learning substantially 
increase control performance. In the previous section, it 
has been argued that the speed of learning depends on the 

Towards learning from data of previous tasks. 

Learning from past data in a printer system: fast convergence to 
encoder resolution.
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model quality used to design L. But can it in fact always 
be guaranteed that the control performance improves?

In Figure 7, the learning procedure of the previous section 
has been repeated with a slightly different model to 
determine the learning filter L. In particular, in the 
experiments of Figure 6, a finite belt stiffness has been 
assumed, see also Figure 1. In the experiments of Figure 7, 
a model has been used where the belt is assumed to be 
infinitely stiff. It is directly observed that in the initial tasks, 
learning improves performance, but from task 4 onwards, 
the error actually increases, showing a diverging behaviour 
until safety measures stop the system at task 7. This can 
also be seen in Figure 8, where the 2-norm of the error 
signal is shown for each task, providing a measure of 
the energy of the error signal. How can feedforward inputs 
lead to a seemingly unstable system behaviour?

Is learning feedforward or feedback?
To understand the behaviour in Figure 7, note that although 
learning is implemented as feedforward in the time domain, 
it actually leads to feedback in the task-domain. This can 
be directly observed in the mixed time/task domain block 
diagram in Figure 9, where the earlier learning update is 
obtained if Q = 1. 

This feedback perspective on learning allows for an explicit 
analysis of the convergence using control theory. In 
particular, with the system behaviour ej = Sr – GSfj and 
learning update fj +1 = fj + Lej it directly follows that:

 ej+1 = (1 – GSL)ej

This type of iteration is ubiquitous in control theory. A very 
classical result, the Banach fixed-point theorem, implies that 
this iteration converges in the sense of Figure 8, if the Bode 
magnitude plot of (1 – GSL) is less than 1 for all frequencies. 
Thus, convergence, as in Figure 6, 7, and 8, can be directly 
verified using tools that are traditionally used by 
mechatronic feedback control engineers. Again, this 
confirms that learning control in fact is feedback. The 
feedback perspective on iterative learning from task to task 
also allows for different choices of L, which can for instance 
be chosen as a PD controller as in Arimoto ILC approaches 
[4]. Essentially, this involves a trade-off between required 
model complexity and convergence speed and behaviour. 

Safe learning: the role of robust control
Clearly, when working with physical systems, the diverging 
behaviour in Figure 7 should be avoided at all cost. This 
divergence depends on the model that is used for the 
learning filter L. Control engineers typically have two 
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Mixed time/task-domain block diagram of iterative learning control, 
revealing that learning actually is a feedback mechanism. 
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options in case model errors are too large. First, a better 
model can be made. Unfortunately, obtaining a model 
that satisfies the convergence condition for all frequencies 
requires an extremely high model quality, which is often 
prohibitively expensive. Second, robustness can be enforced 
in the design, which is often much more attractive in view 
of the modelling effort required.

In particular, the field of robust control provides a highly 
systematic approach for safe learning. Indeed, robustness 
can be directly enforced by selecting Q in Figure 9. In 
particular, in case the Bode magnitude plot of (1 – GSL) is 
not less than 1 for all frequencies, a frequency-dependent  
Q should be designed such that Q(1 – GSL) is less than 1. 
Interestingly, this condition can be immediately verified for 
a set of identified frequency-response functions, which 
shows a high similarity with traditional mechatronic 
feedback control design, see [5].

Industrial implementation
The results in Figure 6 reveal an impressive performance 
improvement. This raises the immediate question: why is 
learning control not yet standard in industrial mechatronic 
systems?
 
Task flexibility
The learning approach outlined in the previous sections 
assumes that the reference, see Figure 2, is identical for each 
task. However, in many mechatronic systems the references 
may change for each task, a typical example being 3D 
printing. Unfortunately, learning control is highly sensitive 
for small variations in the reference. 

To visualise the troublesome situation, a drawing task has 
been performed with the 2D industrial flatbed printer in 
Figure 10. In task 0-4, the goal of the printer is to draw a 
square. At task 5, the reference is changed to a triangle. 

Learning with varying references on the 2D flatbed printer in Figure 
10. In task 0-4, the goal is to draw a square. From task 5 onwards, the 
goal is to draw a triangle. Feedback control (blue) leads to mediocre 
performance. Learning control (green), as described above, leads to an 
almost perfect square at iteration 3, yet yields very poor performance as 
soon as the reference changes in task 5. Recently developed algorithms 
(black) combine task flexibility and high performance through learning.

Clearly, the performance deteriorates significantly, and 
becomes even worse compared to feedback. Indeed, in case 
the reference changes each task, it can be shown that 
feedback outperforms learning. 

To address these aspects, learning control with flexibility 
to tasks has recently been investigated, e.g., in [6]. The key 
idea is to parameterise fj such that it extrapolates well with 
changing references. In Figure 11, the potential is already 
apparent: both flexibility to varying tasks and high 
performance are achieved with the new approach.

Learning in complex high-tech systems
High-tech systems are becoming increasingly complex.  
The example system in Figure 1 only has a single input and 
output, whereas the system in Figure 10 already has three 
inputs and three outputs. In many high-tech systems, e.g. in 
lithography, the entire system may have hundreds of inputs 
and outputs. This raises the question how learning should 
be performed, and whether the learning approach described 
above can be applied sequentially or simultaneously for 
a set of input-output pairs. 

Unfortunately, the naive way of learning for a number of 
input-output pairs often does not work. In Figure 12, it is 
shown what happens when the learning approach is naively 
applied to multiple inputs and outputs of the system in 
Figure 10 simultaneously. Clearly, this may lead to a 
diverging error, while the individual loops converge. 

Interestingly, this aspect directly connects to multivariable 
control theory. In [7], a unified framework is developed that Industrial flatbed printer with varying references.
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allows a systematic design of multivariable learning controllers 
for complex systems with many inputs and outputs. 
Interestingly, the approach focuses on a well-balanced use 
of models and data. The result in Figure 12 confirms that 
fast and safe learning is achieved for complex systems. 

Data-driven intelligent mechatronic systems

What learning has to offer
Learning enables a major performance improvement in 
machines by exploiting data from past tasks. A general 
framework for fast and safe learning has been outlined in 
this article, enabling intelligent mechatronic systems in 
the near future that can be controlled to the limits of 
their reproducible behaviour. The role of model-based 
approaches has been clearly emphasised to achieve fast 
learning. Control theory is central to achieve safe learning 
with convergent error signals, which is an essential aspect 
for learning in physical systems.

A key remaining question is how much performance 
improvement can be expected with learning? Also, is a 
classical feedback controller still required? As a general 
answer, the field of control is able to compensate to the limit 
of reproducible behaviour of the physical system under 
consideration. To investigate what learning has to offer 
for a particular system, consider the following practical 
procedure. Perform a sequence of nexp experiments with 
traditional feedback control and optionally feedforward 
control implemented and measure the error signals  
ej, j = 0, ..., nexp –1, and compute the sample mean, i.e.:

 

 
 𝑚𝑚𝑒𝑒 =  1

𝑛𝑛exp
∑ 𝑒𝑒𝑗𝑗

 𝑛𝑛exp−1
𝑗𝑗=0  

  
Learning, as has been outlined in the previous sections, 
is capable of designing a control input that completely com-
pensates for me. The performance that can be expected after 
learning is thus given by signals ej – me , j = 0, ..., nexp –1. 
In this respect, the obtained error at task 10 and beyond 
in Figure 6 could have been directly predicted from the 
sample mean of the realisations in Figure 4, where only 
feedback control is implemented.
 
The remaining error ej – me is the part that cannot be 
predicted before the next task starts. Intuitively, feedback 
control has the task to compensate for these disturbances 
that occur during the task. Indeed, these disturbances are 
different each task, but have similar properties for each task, 
e.g. in terms of their frequency content. It means that as 
soon as measured data becomes available during the task, a 
well-tuned feedback controller can effectively address these 
disturbances. This has been well-known since the advent of 
optimal control theory in the 1960s: the feedback controller 
should optimally lead to an error signal which is white 
noise. In the context of joint learning and feedback, this is 
investigated in detail in [8]. In conclusion, learning control 
and a good feedback design are both essential in precision 
mechatronic systems.
 
Future developments
In the near future, a further bridge between model-based 
control and data-based learning is to be expected, which 
will enable tremendous performance improvements in 
mechatronic systems. On the one hand, high-tech 
mechatronic systems are expected to be increasingly 
complex [9], leading to new learning controllers for 
multivariable systems [7], unmeasurable performance 
variables [10], linear parameter-varying dynamics [11], 
and varying tasks [6]. On the other hand, new developments 
in control and machine learning will lead to new learning 
control appoaches, including model-free and reset-free 
learning [12], kernel-based regression techniques [13], 
and sparse optimisation [14]. 
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